Code of Federal Regulations (alpha)

CFR /  Title 40  /  Part 63  /  Sec. 63.1349 Performance testing requirements.

(a) You must document performance test results in complete test reports that contain the information required by paragraphs (a)(1) through (10) of this section, as well as all other relevant information. As described in Sec. 63.7(c)(2)(i), you must make available to the Administrator prior to testing, if requested, the site-specific test plan to be followed during performance testing. For purposes of determining exhaust gas flow rate to the atmosphere from an alkali bypass stack or a coal mill stack, you must either install, operate, calibrate and maintain an instrument for continuously measuring and recording the exhaust gas flow rate according to the requirements in paragraphs Sec. 63.1350(n)(1) through (10) of this subpart or use the maximum design exhaust gas flow rate. For purposes of determining the combined emissions from kilns equipped with an alkali bypass or that exhaust kiln gases to a coal mill that exhausts through a separate stack, instead of installing a CEMS on the alkali bypass stack or coal mill stack, you may use the results of the initial and subsequent performance test to demonstrate compliance with the relevant emissions limit.

(1) A brief description of the process and the air pollution control system;

(2) Sampling location description(s);

(3) A description of sampling and analytical procedures and any modifications to standard procedures;

(4) Test results;

(5) Quality assurance procedures and results;

(6) Records of operating conditions during the performance test, preparation of standards, and calibration procedures;

(7) Raw data sheets for field sampling and field and laboratory analyses;

(8) Documentation of calculations;

(9) All data recorded and used to establish parameters for monitoring; and

(10) Any other information required by the performance test method.

(b)(1) PM emissions tests. The owner or operator of a kiln subject to limitations on PM emissions shall demonstrate initial compliance by conducting a performance test using Method 5 or Method 5I at appendix A-3 to part 60 of this chapter. You must also monitor continuous performance through use of a PM continuous parametric monitoring system (PM CPMS).

(1) PM emissions tests. The owner or operator of a kiln subject to limitations on PM emissions shall demonstrate initial compliance by conducting a performance test using Method 5 or Method 5I at appendix A-3 to part 60 of this chapter. You must also monitor continuous performance through use of a PM continuous parametric monitoring system (PM CPMS).

(i) For your PM CPMS, you will establish a site-specific operating limit. If your PM performance test demonstrates your PM emission levels to be below 75 percent of your emission limit you will use the average PM CPMS value recorded during the PM compliance test, the milliamp equivalent of zero output from your PM CPMS, and the average PM result of your compliance test to establish your operating limit. If your PM compliance test demonstrates your PM emission levels to be at or above 75 percent of your emission limit you will use the average PM CPMS value recorded during the PM compliance test to establish your operating limit. You will use the PM CPMS to demonstrate continuous compliance with your operating limit. You must repeat the performance test annually and reassess and adjust the site-specific operating limit in accordance with the results of the performance test.

(A) Your PM CPMS must provide a 4-20 milliamp output and the establishment of its relationship to manual reference method measurements must be determined in units of milliamps.

(B) Your PM CPMS operating range must be capable of reading PM concentrations from zero to a level equivalent to three times your allowable emission limit. If your PM CPMS is an auto-ranging instrument capable of multiple scales, the primary range of the instrument must be capable of reading PM concentration from zero to a level equivalent to three times your allowable emission limit.

(C) During the initial performance test or any such subsequent performance test that demonstrates compliance with the PM limit, record and average all milliamp output values from the PM CPMS for the periods corresponding to the compliance test runs (e.g., average all your PM CPMS output values for three corresponding 2-hour Method 5I test runs).

(ii) Determine your operating limit as specified in paragraphs (b)(1)(iii) through (iv) of this section. If your PM performance test demonstrates your PM emission levels to be below 75 percent of your emission limit you will use the average PM CPMS value recorded during the PM compliance test, the milliamp equivalent of zero output from your PM CPMS, and the average PM result of your compliance test to establish your operating limit. If your PM compliance test demonstrates your PM emission levels to be at or above 75 percent of your emission limit you will use the average PM CPMS value recorded during the PM compliance test to establish your operating limit. You must verify an existing or establish a new operating limit after each repeated performance test. You must repeat the performance test at least annually and reassess and adjust the site-specific operating limit in accordance with the results of the performance test.

(iii) If the average of your three Method 5 or 5I compliance test runs is below 75 percent of your PM emission limit, you must calculate an operating limit by establishing a relationship of PM CPMS signal to PM concentration using the PM CPMS instrument zero, the average PM CPMS values corresponding to the three compliance test runs, and the average PM concentration from the Method 5 or 5I compliance test with the procedures in (a)(1)(iii)(A) through (D) of this section.

(A) Determine your PM CPMS instrument zero output with one of the following procedures.

(1) Zero point data for in-situ instruments should be obtained by removing the instrument from the stack and monitoring ambient air on a test bench.

(2) Zero point data for extractive instruments should be obtained by removing the extractive probe from the stack and drawing in clean ambient air.

(3) The zero point may also be established by performing manual reference method measurements when the flue gas is free of PM emissions or contains very low PM concentrations (e.g., when your process is not operating, but the fans are operating or your source is combusting only natural gas) and plotting these with the compliance data to find the zero intercept.

(4) If none of the steps in paragraphs (a)(1)(iii)(A)(1) through (3) of this section are possible, you must use a zero output value provided by the manufacturer.

(B) Determine your PM CPMS instrument average in milliamps, and the average of your corresponding three PM compliance test runs, using equation 3. [GRAPHIC] [TIFF OMITTED] TR12FE13.008 Where: X1 = The PM CPMS data points for the three runs constituting

the performance test.Y1 = The PM concentration value for the three runs

constituting the performance test.n = The number of data points.

(C) With your instrument zero expressed in milliamps, your three run average PM CPMS milliamp value, and your three run PM compliance test average, determine a relationship of lb/ton-clinker per milliamp with Equation 4.[GRAPHIC] [TIFF OMITTED] TR12FE13.009 Where: R = The relative lb/ton-clinker per milliamp for your PM CPMS.Y1 = The three run average lb/ton-clinker PM concentration.X1 = The three run average milliamp output from you PM CPMS.z = The milliamp equivalent of your instrument zero determined from

(b)(1)(iii)(A).

(1)(iii)(A).

(iii)(A).

(A).

(D) Determine your source specific 30-day rolling average operating limit using the lb/ton-clinker per milliamp value from Equation 4 in Equation 5, below. This sets your operating limit at the PM CPMS output value corresponding to 75 percent of your emission limit.[GRAPHIC] [TIFF OMITTED] TR12FE13.010 Where: Ol = The operating limit for your PM CPMS on a 30-day rolling

average, in milliamps.L = Your source emission limit expressed in lb/ton clinker.z = Your instrument zero in milliamps, determined from (1)(i).R = The relative lb/ton-clinker per milliamp for your PM CPMS, from

Equation 4.

(iv) If the average of your three PM compliance test runs is at or above 75 percent of your PM emission limit you must determine your operating limit by averaging the PM CPMS milliamp output corresponding to your three PM performance test runs that demonstrate compliance with the emission limit using Equation 6.[GRAPHIC] [TIFF OMITTED] TR12FE13.011 Where: X1 = The PM CPMS data points for all runs i.n = The number of data points.Oh = Your site specific operating limit, in milliamps.

(v) To determine continuous operating compliance, you must record the PM CPMS output data for all periods when the process is operating, and use all the PM CPMS data for calculations when the source is not out-of-control. You must demonstrate continuous compliance by using all quality-assured hourly average data collected by the PM CPMS for all operating hours to calculate the arithmetic average operating parameter in units of the operating limit (milliamps) on a 30 operating day rolling average basis, updated at the end of each new kiln operating day. Use Equation 7 to determine the 30 kiln operating day average.[GRAPHIC] [TIFF OMITTED] TR12FE13.012 Where: Hpvi = The hourly parameter value for hour i.n = The number of valid hourly parameter values collected over 30 kiln

operating days.

(vi) For each performance test, conduct at least three separate test runs under the conditions that exist when the affected source is operating at the highest load or capacity level reasonably expected to occur. Conduct each test run to collect a minimum sample volume of 2 dscm for determining compliance with a new source limit and 1 dscm for determining compliance with an existing source limit. Calculate the average of the results from three consecutive runs, including applicable sources as required by (D)(viii), to determine compliance. You need not determine the particulate matter collected in the impingers (``back half'') of the Method 5 or Method 5I particulate sampling train to demonstrate compliance with the PM standards of this subpart. This shall not preclude the permitting authority from requiring a determination of the ``back half'' for other purposes.

(vii) For PM performance test reports used to set a PM CPMS operating limit, the electronic submission of the test report must also include the make and model of the PM CPMS instrument, serial number of the instrument, analytical principle of the instrument (e.g. beta attenuation), span of the instruments primary analytical range, milliamp value equivalent to the instrument zero output, technique by which this zero value was determined, and the average milliamp signals corresponding to each PM compliance test run.

(viii) When there is an alkali bypass and/or an inline coal mill with a separate stack associated with a kiln, the main exhaust and alkali bypass and/or inline coal mill must be tested simultaneously and the combined emission rate of PM from the kiln and alkali bypass and/or inline coal mill must be computed for each run using Equation 8 of this section.[GRAPHIC] [TIFF OMITTED] TR12FE13.013 Where: EC = Combined hourly emission rate of PM from the kiln and

bypass stack and/or inline coal mill, lb/ton of kiln clinker

production.EK = Hourly emissions of PM emissions from the kiln, lb. EB = Hourly PM emissions from the alkali bypass stack, lb.EC = Hourly PM emissions from the inline coal mill stack, lb.P = Hourly clinker production, tons.

(ix) The owner or operator of a kiln with an in-line raw mill and subject to limitations on PM emissions shall demonstrate initial compliance by conducting separate performance tests while the raw mill is under normal operating conditions and while the raw mill is not operating.

(2) Opacity tests. If you are subject to limitations on opacity under this subpart, you must conduct opacity tests in accordance with Method 9 of appendix A-4 to part 60 of this chapter. The duration of the Method 9 performance test must be 3 hours (30 6-minute averages), except that the duration of the Method 9 performance test may be reduced to 1 hour if the conditions of paragraphs (b)(2)(i) through (b)(2)(ii) of this section apply. For batch processes that are not run for 3-hour periods or longer, compile observations totaling 3 hours when the unit is operating.

(i) There are no individual readings greater than 10 percent opacity;

(ii) There are no more than three readings of 10 percent for the first 1-hour period.

(3) D/F Emissions Tests. If you are subject to limitations on D/F emissions under this subpart, you must conduct a performance test using Method 23 of appendix A-7 to part 60 of this chapter. If your kiln or in-line kiln/raw mill is equipped with an alkali bypass, you must conduct simultaneous performance tests of the kiln or in-line kiln/raw mill exhaust and the alkali bypass. You may conduct a performance test of the alkali bypass exhaust when the raw mill of the in-line kiln/raw mill is operating or not operating.

(i) Each performance test must consist of three separate runs conducted under representative conditions. The duration of each run must be at least 3 hours, and the sample volume for each run must be at least 2.5 dscm (90 dscf).

(ii) The temperature at the inlet to the kiln or in-line kiln/raw mill PMCD, and, where applicable, the temperature at the inlet to the alkali bypass PMCD must be continuously recorded during the period of the Method 23 test, and the continuous temperature record(s) must be included in the performance test report.

(iii) Hourly average temperatures must be calculated for each run of the performance test.

(iv) The run average temperature must be calculated for each run, and the average of the run average temperatures must be determined and included in the performance test report and will determine the applicable temperature limit in accordance with Sec. 63.1344(b).

(v)(A) If sorbent injection is used for D/F control, you must record the rate of sorbent injection to the kiln exhaust, and where applicable, the rate of sorbent injection to the alkali bypass exhaust, continuously during the period of the Method 23 test in accordance with the conditions in Sec. 63.1350(m)(9), and include the continuous injection rate record(s) in the performance test report. Determine the sorbent injection rate parameters in accordance with paragraphs (b)(3)(vi) of this section.

(A) If sorbent injection is used for D/F control, you must record the rate of sorbent injection to the kiln exhaust, and where applicable, the rate of sorbent injection to the alkali bypass exhaust, continuously during the period of the Method 23 test in accordance with the conditions in Sec. 63.1350(m)(9), and include the continuous injection rate record(s) in the performance test report. Determine the sorbent injection rate parameters in accordance with paragraphs (b)(3)(vi) of this section.

(B) Include the brand and type of sorbent used during the performance test in the performance test report.

(C) Maintain a continuous record of either the carrier gas flow rate or the carrier gas pressure drop for the duration of the performance test. If the carrier gas flow rate is used, determine, record, and maintain a record of the accuracy of the carrier gas flow rate monitoring system according to the procedures in appendix A to part 75 of this chapter. If the carrier gas pressure drop is used, determine, record, and maintain a record of the accuracy of the carrier gas pressure drop monitoring system according to the procedures in Sec. 63.1350(m)(6).

(vi) Calculate the run average sorbent injection rate for each run and determine and include the average of the run average injection rates in the performance test report and determine the applicable injection rate limit in accordance with Sec. 63.1346(c)(1).

(4) THC emissions test. (i) If you are subject to limitations on THC emissions, you must operate a CEMS in accordance with the requirements in Sec. 63.1350(i). For the purposes of conducting the accuracy and quality assurance evaluations for CEMS, the THC span value (as propane) is 50 ppmvd and the reference method (RM) is Method 25A of appendix A to part 60 of this chapter.

(i) If you are subject to limitations on THC emissions, you must operate a CEMS in accordance with the requirements in Sec. 63.1350(i). For the purposes of conducting the accuracy and quality assurance evaluations for CEMS, the THC span value (as propane) is 50 ppmvd and the reference method (RM) is Method 25A of appendix A to part 60 of this chapter.

(ii) Use the THC CEMS to conduct the initial compliance test for the first 30 kiln operating days of kiln operation after the compliance date of the rule. See 63.1348(a).

(iii) If kiln gases are diverted through an alkali bypass or to a coal mill and exhausted through a separate stack, you must calculate a kiln-specific THC limit using Equation 9:[GRAPHIC] [TIFF OMITTED] TR12FE13.014 Where: Cks = Kiln stack concentration (ppmvd).Qab = Alkali bypass flow rate (volume/hr).Cab = Alkali bypass concentration (ppmvd).Qcm = Coal mill flow rate (volume/hr).Ccm = Coal mill concentration (ppmvd).Qks = Kiln stack flow rate (volume/hr).

(iv) THC must be measured either upstream of the coal mill or the coal mill stack.

(v) Instead of conducting the performance test specified in paragraph (b)(4)of this section, you may conduct a performance test to determine emissions of total organic HAP by following the procedures in paragraphs (b)(7) of this section.

(5) Mercury Emissions Tests. If you are subject to limitations on mercury emissions, you must operate a mercury CEMS or a sorbent trap monitoring system in accordance with the requirements of Sec. 63.1350(k). The initial compliance test must be based on the first 30 kiln operating days in which the affected source operates using a mercury CEMS or a sorbent trap monitoring system after the compliance date of the rule. See Sec. 63.1348(a).

(i) If you are using a mercury CEMS or a sorbent trap monitoring system, you must install, operate, calibrate, and maintain an instrument for continuously measuring and recording the exhaust gas flow rate to the atmosphere according to the requirements in Sec. 63.1350(k)(5).

(ii) Calculate the emission rate using Equation 10 of this section:

[GRAPHIC] [TIFF OMITTED] TR12FE13.015

Where: E30D = 30-day rolling emission rate of mercury, lb/MM tons

clinker.Ci = Concentration of mercury for operating hour i, [micro]g/

scm.Qi = Volumetric flow rate of effluent gas for operating hour

i, where Ci and Qi are on the same basis

(either wet or dry), scm/hr.k = Conversion factor, 1 lb/454,000,000 [micro]g.n = Number of kiln operating hours in a 30 kiln operating day period.P = 30 days of clinker production during the same time period as the

mercury emissions measured, million tons.

(6) HCl emissions tests. For a source subject to limitations on HCl emissions you must conduct performance testing by one of the following methods:

(i)(A) If the source is equipped with a wet scrubber, tray tower or dry scrubber, you must conduct performance testing using Method 321 of appendix A to this part unless you have installed a CEMS that meets the requirements Sec. 63.1350(l)(1). For kilns with inline raw mills, testing should be conducted for the raw mill on and raw mill off conditions.

(A) If the source is equipped with a wet scrubber, tray tower or dry scrubber, you must conduct performance testing using Method 321 of appendix A to this part unless you have installed a CEMS that meets the requirements Sec. 63.1350(l)(1). For kilns with inline raw mills, testing should be conducted for the raw mill on and raw mill off conditions.

(B) You must establish site specific parameter limits by using the CPMS required in Sec. 63.1350(l)(1). For a wet scrubber or tray tower, measure and record the pressure drop across the scrubber and/or liquid flow rate and pH in intervals of no more than 15 minutes during the HCl test. Compute and record the 24-hour average pressure drop, pH, and average scrubber water flow rate for each sampling run in which the applicable emissions limit is met. For a dry scrubber, measure and record the sorbent injection rate in intervals of no more than 15 minutes during the HCl test. Compute and record the 24-hour average sorbent injection rate and average sorbent injection rate for each sampling run in which the applicable emissions limit is met.

(ii)(A) If the source is not controlled by a wet scrubber, tray tower or dry sorbent injection system, you must operate a CEMS in accordance with the requirements of Sec. 63.1350(l)(1). See Sec. 63.1348(a).

(A) If the source is not controlled by a wet scrubber, tray tower or dry sorbent injection system, you must operate a CEMS in accordance with the requirements of Sec. 63.1350(l)(1). See Sec. 63.1348(a).

(B) The initial compliance test must be based on the 30 kiln operating days that occur after the compliance date of this rule in which the affected source operates using a HCl CEMS. Hourly HCl concentration data must be obtained according to Sec. 63.1350(l).

(iii) As an alternative to paragraph (b)(6)(i)(B) of this section, you may choose to monitor SO2 emissions using a CEMS in accordance with the requirements of Sec. 63.1350(l)(3). You must establish an SO2 operating limit equal to the highest 1 hour average recorded during the HCl stack test. This operating limit will apply only for demonstrating HCl compliance.

(iv) If kiln gases are diverted through an alkali bypass or to a coal mill and exhausted through a separate stack, you must calculate a kiln-specific HCl limit using Equation 11:[GRAPHIC] [TIFF OMITTED] TR12FE13.016 Where: Cks = Kiln stack concentration (ppmvd).Qab = Alkali bypass flow rate (volume/hr).Cab = Alkali bypass concentration (ppmvd).Qcm = Coal mill flow rate (volume/hr).Ccm = Coal mill concentration (ppmvd).Qks = Kiln stack flow rate (volume/hr).

(7) Total Organic HAP Emissions Tests. Instead of conducting the performance test specified in paragraph (a)(4) of this section, you may conduct a performance test to determine emissions of total organic HAP by following the procedures in paragraphs (a)(7)(i) through (v) of this section.

(i) Use Method 320 of appendix A to this part, Method 18 of Appendix A of part 60, ASTM D6348-03 or a combination to determine emissions of total organic HAP. Each performance test must consist of three separate runs under the conditions that exist when the affected source is operating at the representative performance conditions in accordance with Sec. 63.7(e). Each run must be conducted for at least 1 hour.

(ii) At the same time that you are conducting the performance test for total organic HAP, you must also determine a site-specific THC emissions limit by operating a THC CEMS in accordance with the requirements of Sec. 63.1350(j). The duration of the performance test must be at least 3 hours and the average THC concentration (as calculated from the 1-minute averages) during the 3-hour test must be calculated. You must establish your THC operating limit and determine compliance with it according to paragraphs (a)(7)(vii)through (viii)of this section. It is permissible to extend the testing time of the organic HAP performance test if you believe extended testing is required to adequately capture THC variability over time.

(iii) If your source has an in-line kiln/raw mill you must use the fraction of time the raw mill is on and the fraction of time that the raw mill is off and calculate this limit as a weighted average of the THC levels measured during raw mill on and raw mill off testing.

(iv) If your organic HAP emissions are below 75 percent of the organic HAP standard and you determine your operating limit with paragraph (b)(7)(vii) of this section your THC CEMS must be calibrated and operated on a measurement scale no greater than 180 ppmvw, as carbon, or 60 ppmvw as propane.

(v) Your THC CEMS measurement scale must be capable of reading THC concentrations from zero to a level equivalent to two times your highest THC emissions average determined during your performance test, including mill on or mill off operation.

Note: This may require the use of a dual range instrument to meet this requirement and paragraph (b)(7)(iv) of this section.

(vi) Determine your operating limit as specified in paragraphs (a)(7)(vii) and (viii) of this section. If your organic HAP performance test demonstrates your average organic HAP emission levels are below 75 percent of your emission limit (9 ppmv) you will use the average THC value recorded during the organic HAP performance test, and the average total organic HAP result of your performance test to establish your operating limit. If your organic HAP compliance test results demonstrate your average organic HAP emission levels are at or above 75 percent of your emission limit, your operating limit is established as the average THC value recorded during the organic HAP performance test. You must establish a new operating limit after each performance test. You must repeat the performance test no later than 30 months following your last performance test and reassess and adjust the site-specific operating limit in accordance with the results of the performance test.

(vii) If the average organic HAP results for your three Method 18 and/or Method 320 performance test runs are below 75 percent of your organic HAP emission limit, you must calculate an operating limit by establishing a relationship of THC CEMS signal to the organic HAP concentration using the average THC CEMS value corresponding to the three organic HAP compliance test runs and the average organic HAP total concentration from the Method 18 and/or Method 320 performance test runs with the procedures in (a)(7)(vii)(A) and (B) of this section.

(A) Determine the THC CEMS average values in ppmvw, and the average of your corresponding three total organic HAP compliance test runs, using Equation 12.[GRAPHIC] [TIFF OMITTED] TR12FE13.017 Where: x = The THC CEMS average values in ppmvw.Xi= The THC CEMS data points for all three runs i.Yi= The sum of organic HAP concentrations for test runs i. andn = The number of data points.

(B) You must use your three run average THC CEMS value, and your three run average organic HAP concentration from your three Method 18 and/or Method 320 compliance tests to determine the operating limit. Use equation 13 to determine your operating limit in units of ppmvw THC, as propane.[GRAPHIC] [TIFF OMITTED] TR12FE13.018 Where: Tl = The 30-day operating limit for your THC CEMS, ppmvw.Y1 = The average organic HAP concentration from Eq. 12, ppmv.X1 = The average THC CEMS concentration from Eq. 12, ppmvw.

(viii) If the average of your three organic HAP performance test runs is at or above 75 percent of your organic HAP emission limit, you must determine your operating limit using Equation 14 by averaging the THC CEMS output values corresponding to your three organic HAP performance test runs that demonstrate compliance with the emission limit. If your new THC CEMS value is below your current operating limit, you may opt to retain your current operating limit, but you must still submit all performance test and THC CEMS data according to the reporting requirements in paragraph (d)(1) of this section.[GRAPHIC] [TIFF OMITTED] TR12FE13.019 Where: X1 = The THC CEMS data points for all runs i.Y1 = The organic HAP total value for runs i.n = The number of data points.Th = Your site specific operating limit, in ppmvw THC.

(ix) If your kiln has an inline kiln/raw mill, you must conduct separate performance tests while the raw mill is operating (``mill on'') and while the raw mill is not operating (``mill off''). Using the fraction of time the raw mill is on and the fraction of time that the raw mill is off, calculate this limit as a weighted average of the THC levels measured during raw mill on and raw mill off compliance testing with Equation 15.[GRAPHIC] [TIFF OMITTED] TR12FE13.020 Where: R = Operating limit as THC, ppmvw.y = Average THC CEMS value during mill on operations, ppmvw.t = Percentage of operating time with mill on.x = Average THC CEMS value during mill off operations, ppmvw.(1-t) = Percentage of operating time with mill off.

(x) To determine continuous compliance with the THC operating limit, you must record the THC CEMS output data for all periods when the process is operating and the THC CEMS is not out-of-control. You must demonstrate continuous compliance by using all quality-assured hourly average data collected by the THC CEMS for all operating hours to calculate the arithmetic average operating parameter in units of the operating limit (ppmvw) on a 30 operating day rolling average basis, updated at the end of each new kiln operating day. Use Equation 16 to determine the 30 kiln operating day average.[GRAPHIC] [TIFF OMITTED] TR12FE13.021 Where:Hpvi = The hourly parameter value for hour i, ppmvw.n = The number of valid hourly parameter values collected over 30 kiln

operating days.

(xi) Use EPA Method 18 or Method 320 of appendix A to part 60 of this chapter to determine organic HAP emissions. For each performance test, conduct at least three separate runs under the conditions that exist when the affected source is operating at the highest load or capacity level reasonably expected to occur. If your source has an in-line kiln/raw mill you must conduct three separate test runs with the raw mill on, and three separate runs under the conditions that exist when the affected source is operating at the highest load or capacity level reasonably expected to occur with the mill off. Conduct each Method 18 test run to collect a minimum target sample equivalent to three times the method detection limit. Calculate the average of the results from three runs to determine compliance.

(xii) If the THC level exceeds by 10 percent or more your site-specific THC emissions limit, you must

(A) As soon as possible but no later than 30 days after the exceedance, conduct an inspection and take corrective action to return the THC CEMS measurements to within the established value; and

(B) Within 90 days of the exceedance or at the time of the annual compliance test, whichever comes first, conduct another performance test to determine compliance with the organic HAP limit and to verify or re-establish your site-specific THC emissions limit.

(8) HCl Emissions Tests with SO2 Monitoring. If you choose to monitor SO2 emissions using a CEMS to demonstrate HCl compliance, follow the procedures in (b)(8)(i) through (ix) of this section and in accordance with the requirements of Sec. 63.1350(l)(3). You must establish an SO2 operating limit equal to the average of the SO2 emissions recorded during the HCl stack test. This operating limit will apply only for demonstrating HCl compliance.

(i) Use Method 321 of appendix A to this part to determine emissions of HCl. Each performance test must consist of three separate runs under the conditions that exist when the affected source is operating at the representative performance conditions in accordance with Sec. 63.7(e). Each run must be conducted for at least one hour.

(ii) At the same time that you are conducting the performance test for HCl, you must also determine a site-specific SO2 emissions limit by operating an SO2 CEMS in accordance with the requirements of Sec. 63.1350(l). The duration of the performance test must be three hours and the average SO2 concentration (as calculated from the 1-minute averages) during the 3-hour test must be calculated. You must establish your SO2 operating limit and determine compliance with it according to paragraphs (b)(8)(vii) and (viii)of this section.

(iii) If your source has an in-line kiln/raw mill you must use the fraction of time the raw mill is on and the fraction of time that the raw mill is off and calculate this limit as a weighted average of the SO2 levels measured during raw mill on and raw mill off testing.

(iv) Your SO2 CEMS must be calibrated and operated according to the requirements of Sec. 60.63(f).

(v) Your SO2 CEMS measurement scale must be capable of reading SO2 concentrations consistent with the requirements of Sec. 60.63(f), including mill on or mill off operation.

(vi) If your kiln has an inline kiln/raw mill, you must conduct separate performance tests while the raw mill is operating (``mill on'') and while the raw mill is not operating (``mill off''). Using the fraction of time the raw mill is on and the fraction of time that the raw mill is off, calculate this limit as a weighted average of the THC levels measured during raw mill on and raw mill off compliance testing with Equation 17.[GRAPHIC] [TIFF OMITTED] TR12FE13.022 Where: R = Operating limit as SO2, ppmvw.y = Average SO2 CEMS value during mill on operations, ppmvw.t = Percentage of operating time with mill on, expressed as a decimal.x = Average SO2 CEMS value during mill off operations, ppmvw.t-1 = Percentage of operating time with mill off, expressed as a

decimal.

(vii) To determine continuous compliance with the SO2 operating limit, you must record the SO2 CEMS output data for all periods when the process is operating and the SO2 CEMS is not out-of-control. You must demonstrate continuous compliance by using all quality-assured hourly average data collected by the SO2 CEMS for all operating hours to calculate the arithmetic average operating parameter in units of the operating limit (ppmvw) on a 30 operating day rolling average basis, updated at the end of each new kiln operating day. Use Equation 18 to determine the 30 kiln operating day average.[GRAPHIC] [TIFF OMITTED] TR12FE13.023 Where: Hpvi = The hourly parameter value for hour i, ppmvw.n = The number of valid hourly parameter values collected over 30 kiln

operating days.

(viii) Use EPA Method 321 of appendix A to part 60 of this chapter to determine HCl emissions. For each performance test, conduct at least three separate runs under the conditions that exist when the affected source is operating at the highest load or capacity level reasonably expected to occur. If your source has an in-line kiln/raw mill you must conduct three separate test runs with the raw mill on, and three separate runs under the conditions that exist when the affected source is operating at the highest load or capacity level reasonably expected to occur with the mill off.

(ix) If the SO2 level exceeds by 10 percent or more your site-specific SO2 emissions limit, you must

(A) As soon as possible but no later than 30 days after the exceedance, conduct an inspection and take corrective action to return the SO2 CEMS measurements to within the established value. and

(B) Within 90 days of the exceedance or at the time of the annual compliance test, whichever comes first, conduct another performance test to determine compliance with the HCl limit and to verify or re-establish your site-specific SO2 emissions limit.

(c) Performance Test Frequency. Except as provided in Sec. 63.1348(b), performance tests are required at regular intervals for affected sources that are subject to a dioxin, organic HAP or HCl emissions limit and must be repeated every 30 months except for pollutants where that specific pollutant is monitored using CEMS. Tests for PM are repeated every 12 months.

(d) Performance Test Reporting Requirements. (1) You must submit the information specified in paragraphs (d)(1) and (2) of this section no later than 60 days following the initial performance test. All reports must be signed by a responsible official.

(1) You must submit the information specified in paragraphs (d)(1) and (2) of this section no later than 60 days following the initial performance test. All reports must be signed by a responsible official.

(i) The initial performance test data as recorded under paragraph (b) of this section.

(ii) The values for the site-specific operating limits or parameters established pursuant to paragraphs (b)(1), (3), (6), and (7) of this section, as applicable, and a description, including sample calculations, of how the operating parameters were established during the initial performance test.

(2) As of December 31, 2011 and within 60 days after the date of completing each performance evaluation or test, as defined in Sec. 63.2, conducted to demonstrate compliance with any standard covered by this subpart, you must submit the relative accuracy test audit data and performance test data, except opacity data, to the EPA by successfully submitting the data electronically to the EPA's Central Data Exchange (CDX) by using the Electronic Reporting Tool(ERT) (see http://www.epa.gov/ttn/chief/ert/ert--tool.html/).

(e) Conditions of performance tests. Conduct performance tests under such conditions as the Administrator specifies to the owner or operator based on representative performance of the affected source for the period being tested. Upon request, you must make available to the Administrator such records as may be necessary to determine the conditions of performance tests.[75 FR 55057, Sept. 9, 2010, as amended at 78 FR 10040, Feb. 12, 2013]