(a) Compliance with standards.
(1) The emission standards and operating requirements set forth in this subpart apply at all times.
(2) If you cease combusting solid waste, you may opt to remain subject to the provisions of this subpart. Consistent with the definition of CISWI unit, you are subject to the requirements of this subpart at least 6 months following the last date of solid waste combustion. Solid waste combustion is ceased when solid waste is not in the combustion chamber (i.e., the solid waste feed to the combustor has been cut off for a period of time not less than the solid waste residence time).
(3) If you cease combusting solid waste, you must be in compliance with any newly applicable standards on the effective date of the waste-to-fuel switch. The effective date of the waste-to-fuel switch is a date selected by you, that must be at least 6 months from the date that you ceased combusting solid waste, consistent with Sec. 60.2145(a)(2). Your source must remain in compliance with this subpart until the effective date of the waste-to-fuel switch.
(4) If you own or operate an existing commercial or industrial combustion unit that combusted a fuel or non-waste material, and you commence or recommence combustion of solid waste, you are subject to the provisions of this subpart as of the first day you introduce or reintroduce solid waste to the combustion chamber, and this date constitutes the effective date of the fuel-to-waste switch. You must complete all initial compliance demonstrations for any section 112 standards that are applicable to your facility before you commence or recommence combustion of solid waste. You must provide 30 days prior notice of the effective date of the waste-to-fuel switch. The notification must identify:
(i) The name of the owner or operator of the CISWI unit, the location of the source, the emissions unit(s) that will cease burning solid waste, and the date of the notice;
(ii) The currently applicable subcategory under this subpart, and any 40 CFR part 63 subpart and subcategory that will be applicable after you cease combusting solid waste;
(iii) The fuel(s), non-waste material(s) and solid waste(s) the CISWI unit is currently combusting and has combusted over the past 6 months, and the fuel(s) or non-waste materials the unit will commence combusting;
(iv) The date on which you became subject to the currently applicable emission limits;
(v) The date upon which you will cease combusting solid waste, and the date (if different) that you intend for any new requirements to become applicable (i.e., the effective date of the waste-to-fuel switch), consistent with paragraphs (a)(2) and (3)of this section.
(5) All air pollution control equipment necessary for compliance with any newly applicable emissions limits which apply as a result of the cessation or commencement or recommencement of combusting solid waste must be installed and operational as of the effective date of the waste-to-fuel, or fuel-to-waste switch.
(6) All monitoring systems necessary for compliance with any newly applicable monitoring requirements which apply as a result of the cessation or commencement or recommencement of combusting solid waste must be installed and operational as of the effective date of the waste-to-fuel, or fuel-to-waste switch. All calibration and drift checks must be performed as of the effective date of the waste-to-fuel, or fuel-to-waste switch. Relative accuracy tests must be performed as of the performance test deadline for PM CEMS (if PM CEMS are elected to demonstrate continuous compliance with the particulate matter emission limits). Relative accuracy testing for other CEMS need not be repeated if that testing was previously performed consistent with Clean Air Act section 112 monitoring requirements or monitoring requirements under this subpart.
(b) You must conduct an annual performance test for the pollutants listed in table 1 of this subpart or tables 5 through 8 of this subpart and opacity for each CISWI unit as required under Sec. 60.2125. The annual performance test must be conducted using the test methods listed in table 1 of this subpart or tables 5 through 8 of this subpart and the procedures in Sec. 60.2125. Annual performance tests are not required if you use CEMS or continuous opacity monitoring systems to determine compliance.
(c) You must continuously monitor the operating parameters specified in Sec. 60.2110 or established under Sec. 60.2115 and as specified in Sec. 60.2170. Use 3-hour block average values to determine compliance (except for baghouse leak detection system alarms) unless a different averaging period is established under Sec. 60.2115 or, for energy recovery units, where the averaging time for each operating parameter is a 30-day rolling, calculated each hour as the average of the previous 720 operating hours. Operation above the established maximum, below the established minimum, or outside the allowable range of operating limits specified in paragraph (a) of this section constitutes a deviation from your operating limits established under this subpart, except during performance tests conducted to determine compliance with the emission and operating limits or to establish new operating limits. Operating limits are confirmed or reestablished during performance tests.
(d) You must burn only the same types of waste and fuels used to establish subcategory applicability (for energy recovery units) and operating limits during the performance test.
(e) For energy recovery units, incinerators, and small remote units, you must perform an annual visual emissions test for ash handling.
(f) For energy recovery units, you must conduct an annual performance test for opacity (except where particulate matter CEMS or continuous opacity monitoring systems are used are used) and the pollutants listed in table 6 of this subpart.
(g) You may elect to demonstrate continuous compliance with the carbon monoxide emission limit using a carbon monoxide CEMS according to the following requirements:
(1) You must measure emissions according to Sec. 60.13 to calculate 1-hour arithmetic averages, corrected to 7 percent oxygen. CEMS data during startup and shutdown, as defined in this subpart, are not corrected to 7 percent oxygen, and are measured at stack oxygen content. You must demonstrate initial compliance with the carbon monoxide emissions limit using a 30-day rolling average of these 1-hour arithmetic average emission concentrations, including CEMS data during startup and shutdown as defined in this subpart, calculated using Equation 19-19 in section 12.4.1 of EPA Reference Method 19 at 40 CFR part 60, appendix A-7 of this part.
(2) Operate the carbon monoxide CEMS in accordance with the requirements of performance specification 4A of appendix B of this part and quality assurance procedure 1 of appendix F of this part.
(h) Coal and liquid/gas energy recovery units with average annual heat input rates greater than or equal to 250 MMBtu/hr may elect to demonstrate continuous compliance with the particulate matter emissions limit using a particulate matter CEMS according to the procedures in Sec. 60.2165(n) instead of the particulate matter continuous parameter monitoring system (CPMS) specified in Sec. 60.2145. Coal and liquid/gas energy recovery units with annual average heat input rates less than 250 MMBtu/hr, incinerators, and small remote incinerators may also elect to demonstrate compliance using a particulate matter CEMS according to the procedures in Sec. 60.2165(n) instead of particulate matter testing with EPA Method 5 at 40 CFR part 60, appendix A-3 and, if applicable, the continuous opacity monitoring requirements in paragraph (i) of this section.
(i) For energy recovery units with annual average heat input rates greater than or equal to 10 MMBtu/hour and less than 250 MMBtu/hr, you must install, operate, certify and maintain a continuous opacity monitoring system (COMS) according to the procedures in Sec. 60.2165.
(j) For waste-burning kilns, you must conduct an annual performance test for cadmium, lead, dioxins/furans and hydrogen chloride as listed in table 7 of this subpart. You must determine compliance with hydrogen chloride using a hydrogen chloride CEMS if you do not use an acid gas wet scrubber or dry scrubber. You must determine compliance with nitrogen oxides, sulfur dioxide, and carbon monoxide using CEMS. You must determine compliance with particulate matter using CPMS. You must determine compliance with the mercury emissions limit using a mercury CEMS according to the following requirements:
(1) Operate a CEMS system in accordance with performance specification 12A of 40 CFR part 60, appendix B or a sorbent trap based integrated monitor in accordance with performance specification 12B of 40 CFR part 60, appendix B. The duration of the performance test must be a calendar month. For each calendar month in which the waste-burning kiln operates, hourly mercury concentration data, and stack gas volumetric flow rate data must be obtained. You must demonstrate compliance with the mercury emissions limit using a 30-day rolling average of these 1-hour mercury concentrations, including CEMS data during startup and shutdown as defined in this subpart, calculated using Equation 19-19 in section 12.4.1 of EPA Reference Method 19 at 40 CFR part 60, appendix A-7 of this part. CEMS data during startup and shutdown, as defined in this subpart, are not corrected to 7 percent oxygen, and are measured at stack oxygen content.
(2) Owners or operators using a mercury CEMS must install, operate, calibrate, and maintain an instrument for continuously measuring and recording the mercury mass emissions rate to the atmosphere according to the requirements of performance specifications 6 and 12A of 40 CFR part 60, appendix B, and quality assurance procedure 6 of 40 CFR part 60, appendix F.
(3) The owner or operator of a waste-burning kiln must demonstrate initial compliance by operating a mercury CEMS while the raw mill of the in-line kiln/raw mill is operating under normal conditions and including at least one period when the raw mill is off.
(k) If you use an air pollution control device to meet the emission limitations in this subpart, you must conduct an initial and annual inspection of the air pollution control device. The inspection must include, at a minimum, the following:
(1) Inspect air pollution control device(s) for proper operation.
(2) Develop a site-specific monitoring plan according to the requirements in paragraph (l) of this section. This requirement also applies to you if you petition the EPA Administrator for alternative monitoring parameters under Sec. 60.13(i).
(l) For each continuous monitoring system required in this section, you must develop and submit to the EPA Administrator for approval a site-specific monitoring plan according to the requirements of this paragraph (l) that addresses paragraphs (l)(1)(i) through (vi) of this section.
(1) You must submit this site-specific monitoring plan at least 60 days before your initial performance evaluation of your continuous monitoring system.
(i) Installation of the continuous monitoring system sampling probe or other interface at a measurement location relative to each affected process unit such that the measurement is representative of control of the exhaust emissions (e.g., on or downstream of the last control device).
(ii) Performance and equipment specifications for the sample interface, the pollutant concentration or parametric signal analyzer and the data collection and reduction systems.
(iii) Performance evaluation procedures and acceptance criteria (e.g., calibrations).
(iv) Ongoing operation and maintenance procedures in accordance with the general requirements of Sec. 60.11(d).
(v) Ongoing data quality assurance procedures in accordance with the general requirements of Sec. 60.13.
(vi) Ongoing recordkeeping and reporting procedures in accordance with the general requirements of Sec. 60.7(b), (c), (c)(1), (c)(4), (d), (e), (f), and (g).
(2) You must conduct a performance evaluation of each continuous monitoring system in accordance with your site-specific monitoring plan.
(3) You must operate and maintain the continuous monitoring system in continuous operation according to the site-specific monitoring plan.
(m) If you have an operating limit that requires the use of a flow monitoring system, you must meet the requirements in paragraphs (l) and (m)(1) through (4) of this section.
(1) Install the flow sensor and other necessary equipment in a position that provides a representative flow.
(2) Use a flow sensor with a measurement sensitivity at full scale of no greater than 2 percent.
(3) Minimize the effects of swirling flow or abnormal velocity distributions due to upstream and downstream disturbances.
(4) Conduct a flow monitoring system performance evaluation in accordance with your monitoring plan at the time of each performance test but no less frequently than annually.
(n) If you have an operating limit that requires the use of a pressure monitoring system, you must meet the requirements in paragraphs (l) and (n)(1) through (6) of this section.
(1) Install the pressure sensor(s) in a position that provides a representative measurement of the pressure (e.g., PM scrubber pressure drop).
(2) Minimize or eliminate pulsating pressure, vibration, and internal and external corrosion.
(3) Use a pressure sensor with a minimum tolerance of 1.27 centimeters of water or a minimum tolerance of 1 percent of the pressure monitoring system operating range, whichever is less.
(4) Perform checks at the frequency outlined in your site-specific monitoring plan to ensure pressure measurements are not obstructed (e.g., check for pressure tap pluggage daily).
(5) Conduct a performance evaluation of the pressure monitoring system in accordance with your monitoring plan at the time of each performance test but no less frequently than annually.
(6) If at any time the measured pressure exceeds the manufacturer's specified maximum operating pressure range, conduct a performance evaluation of the pressure monitoring system in accordance with your monitoring plan and confirm that the pressure monitoring system continues to meet the performance requirements in your monitoring plan. Alternatively, install and verify the operation of a new pressure sensor.
(o) If you have an operating limit that requires a pH monitoring system, you must meet the requirements in paragraphs (l) and (o)(1) through (4) of this section.
(1) Install the pH sensor in a position that provides a representative measurement of scrubber effluent pH.
(2) Ensure the sample is properly mixed and representative of the fluid to be measured.
(3) Conduct a performance evaluation of the pH monitoring system in accordance with your monitoring plan at least once each process operating day.
(4) Conduct a performance evaluation (including a two-point calibration with one of the two buffer solutions having a pH within 1 of the pH of the operating limit) of the pH monitoring system in accordance with your monitoring plan at the time of each performance test but no less frequently than quarterly.
(p) If you have an operating limit that requires a secondary electric power monitoring system for an electrostatic precipitator, you must meet the requirements in paragraphs (l) and (p)(1) through (2) of this section.
(1) Install sensors to measure (secondary) voltage and current to the precipitator collection plates.
(2) Conduct a performance evaluation of the electric power monitoring system in accordance with your monitoring plan at the time of each performance test but no less frequently than annually.
(q) If you have an operating limit that requires the use of a monitoring system to measure sorbent injection rate (e.g., weigh belt, weigh hopper, or hopper flow measurement device), you must meet the requirements in paragraphs (l) and (q)(1) and (2) of this section.
(1) Install the system in a position(s) that provides a representative measurement of the total sorbent injection rate.
(2) Conduct a performance evaluation of the sorbent injection rate monitoring system in accordance with your monitoring plan at the time of each performance test but no less frequently than annually.
(r) If you elect to use a fabric filter bag leak detection system to comply with the requirements of this subpart, you must install, calibrate, maintain, and continuously operate a bag leak detection system as specified in paragraphs (l) and (r)(1) through (5) of this section.
(1) Install a bag leak detection sensor(s) in a position(s) that will be representative of the relative or absolute particulate matter loadings for each exhaust stack, roof vent, or compartment (e.g., for a positive pressure fabric filter) of the fabric filter.
(2) Use a bag leak detection system certified by the manufacturer to be capable of detecting particulate matter emissions at concentrations of 10 milligrams per actual cubic meter or less.
(3) Conduct a performance evaluation of the bag leak detection system in accordance with your monitoring plan and consistent with the guidance provided in EPA-454/R-98-015 (incorporated by reference, see Sec. 60.17).
(4) Use a bag leak detection system equipped with a device to continuously record the output signal from the sensor.
(5) Use a bag leak detection system equipped with a system that will sound an alarm when an increase in relative particulate matter emissions over a preset level is detected. The alarm must be located where it is observed readily by plant operating personnel.
(s) For facilities using a CEMS to demonstrate compliance with the sulfur dioxide emission limit, compliance with the sulfur dioxide emission limit may be demonstrated by using the CEMS specified in Sec. 60.2165 to measure sulfur dioxide. CEMS data during startup and shutdown, as defined in this subpart, are not corrected to 7 percent oxygen, and are measured at stack oxygen content. You must calculate a 30-day rolling average of the 1-hour arithmetic average emission concentrations, including CEMS data during startup and shutdown as defined in this subpart, calculated using Equation 19-19 in section 12.4.1 of EPA Reference Method 19 at 40 CFR part 60, Appendix A-7 of this part. The sulfur dioxide CEMS must be operated according to performance specification 2 in appendix B of this part and must follow the procedures and methods specified in this paragraph (s). For sources that have actual inlet emissions less than 100 parts per million dry volume, the relative accuracy criterion for inlet sulfur dioxide CEMS should be no greater than 20 percent of the mean value of the reference method test data in terms of the units of the emission standard, or 5 parts per million dry volume absolute value of the mean difference between the reference method and the CEMS, whichever is greater.
(1) During each relative accuracy test run of the CEMS required by performance specification 2 in appendix B of this part, collect sulfur dioxide and oxygen (or carbon dioxide) data concurrently (or within a 30- to 60-minute period) with both the CEMS and the test methods specified in paragraphs (s)(1)(i) and (ii) of this section.
(i) For sulfur dioxide, EPA Reference Method 6 or 6C, or as an alternative ANSI/ASME PTC 19.10-1981 (incorporated by reference, see Sec. 60.17) must be used.
(ii) For oxygen (or carbon dioxide), EPA Reference Method 3A or 3B, or as an alternative ANSI/ASME PTC 19.10-1981 (incorporated by reference, see Sec. 60.17), must be used.
(2) The span value of the CEMS at the inlet to the sulfur dioxide control device must be 125 percent of the maximum estimated hourly potential sulfur dioxide emissions of the unit subject to this rule. The span value of the CEMS at the outlet of the sulfur dioxide control device must be 50 percent of the maximum estimated hourly potential sulfur dioxide emissions of the unit subject to this rule.
(3) Conduct accuracy determinations quarterly and calibration drift tests daily in accordance with procedure 1 in appendix F of this part.
(t) For facilities using a CEMS to demonstrate continuous compliance with the nitrogen oxides emission limit, compliance with the nitrogen oxides emission limit may be demonstrated by using the CEMS specified in Sec. 60.2165 to measure nitrogen oxides. CEMS data during startup and shutdown, as defined in this subpart, are not corrected to 7 percent oxygen, and are measured at stack oxygen content. You must calculate a 30-day rolling average of the 1-hour arithmetic average emission concentrations, including CEMS data during startup and shutdown as defined in this subpart, using Equation 19-19 in section 12.4.1 of EPA Reference Method 19 at 40 CFR part 60, appendix A-7 of this part. The nitrogen oxides CEMS must be operated according to performance specification 2 in appendix B of this part and must follow the procedures and methods specified in paragraphs (t)(1) through (5) of this section.
(1) During each relative accuracy test run of the CEMS required by performance specification 2 of appendix B of this part, collect nitrogen oxides and oxygen (or carbon dioxide) data concurrently (or within a 30- to 60-minute period) with both the CEMS and the test methods specified in paragraphs (t)(1)(i) and (ii) of this section.
(i) For nitrogen oxides, EPA Reference Method 7 or 7E at 40 CFR part 60, appendix A-4 must be used.
(ii) For oxygen (or carbon dioxide), EPA Reference Method 3A or 3B at 40 CFR part 60, appendix A-3, or as an alternative ANSI/ASME PTC 19-10.1981 (incorporated by reference, see Sec. 60.17), as applicable, must be used.
(2) The span value of the continuous emission monitoring system must be 125 percent of the maximum estimated hourly potential nitrogen oxide emissions of the unit.
(3) Conduct accuracy determinations quarterly and calibration drift tests daily in accordance with procedure 1 in appendix F of this part.
(4) The owner or operator of an affected facility may request that compliance with the nitrogen oxides emission limit be determined using carbon dioxide measurements corrected to an equivalent of 7 percent oxygen. If carbon dioxide is selected for use in diluent corrections, the relationship between oxygen and carbon dioxide levels must be established during the initial performance test according to the procedures and methods specified in paragraphs (t)(4)(i) through (t)(4)(iv) of this section. This relationship may be re-established during performance compliance tests.
(i) The fuel factor equation in Method 3B must be used to determine the relationship between oxygen and carbon dioxide at a sampling location. Method 3A or 3B, or as an alternative ANSI/ASME PTC 19.10-1981 (incorporated by reference, see Sec. 60.17), as applicable, must be used to determine the oxygen concentration at the same location as the carbon dioxide monitor.
(ii) Samples must be taken for at least 30 minutes in each hour.
(iii) Each sample must represent a 1-hour average.
(iv) A minimum of three runs must be performed.
(u) For facilities using a CEMS to demonstrate continuous compliance with any of the emission limits of this subpart, you must complete the following:
(1) Demonstrate compliance with the appropriate emission limit(s) using a 30-day rolling average of 1-hour arithmetic average emission concentrations, including CEMS data during startup and shutdown as defined in this subpart, calculated using Equation 19-19 in section 12.4.1 of EPA Reference Method 19 at 40 CFR part 60, appendix A-7 of this part. CEMS data during startup and shutdown, as defined in the subpart, are not corrected to 7 percent oxygen, and are measured at stack oxygen content.
(2) Operate all CEMS in accordance with the applicable procedures under appendices B and F of this part.
(v) Use of the bypass stack at any time is an emissions standards deviation for particulate matter, HCl, Pb, Cd, Hg, NOX, SO2, and dioxin/furans.
(w) For energy recovery units with a design heat input capacity of 100 MMBtu per hour or greater that do not use a carbon monoxide CEMS, you must install, operate, and maintain a oxygen analyzer system as defined in Sec. 60.2265 according to the procedures in paragraphs (w)(1) through (4) of this section.
(1) The oxygen analyzer system must be installed by the initial performance test date specified in Sec. 60.2675.
(2) You must operate the oxygen trim system within compliance with paragraph (w)(3) of this section at all times.
(3) You must maintain the oxygen level such that the 30-day rolling average that is established as the operating limit for oxygen is not below the lowest hourly average oxygen concentration measured during the most recent CO performance test.
(4) You must calculate and record a 30-day rolling average oxygen concentration using Equation 19-19 in section 12.4.1 of EPA Reference Method 19 of Appendix A-7 of this part.
(x) For energy recovery units with annual average heat input rates greater than or equal to 250 MMBtu/hour and waste-burning kilns, you must install, calibrate, maintain, and operate a PM CPMS and record the output of the system as specified in paragraphs (x)(1) through (8) of this section. For other energy recovery units, you may elect to use PM CPMS operated in accordance with this section. PM CPMS are suitable in lieu of using other CMS for monitoring PM compliance (e.g., bag leak detectors, ESP secondary power, PM scrubber pressure).
(1) Install, calibrate, operate, and maintain your PM CPMS according to the procedures in your approved site-specific monitoring plan developed in accordance with Sec. 60.2145(l) and (x)(1)(i) through (iii) of this section.
(i) The operating principle of the PM CPMS must be based on in-stack or extractive light scatter, light scintillation, beta attenuation, or mass accumulation detection of the exhaust gas or representative sample. The reportable measurement output from the PM CPMS must be expressed as milliamps.
(ii) The PM CPMS must have a cycle time (i.e., period required to complete sampling, measurement, and reporting for each measurement) no longer than 60 minutes.
(iii) The PM CPMS must be capable of detecting and responding to particulate matter concentrations of no greater than 0.5 mg/actual cubic meter.
(2) During the initial performance test or any such subsequent performance test that demonstrates compliance with the PM limit, you must adjust the site-specific operating limit in accordance with the results of the performance test according to the procedures specified in Sec. 60.2110.
(3) Collect PM CPMS hourly average output data for all energy recovery unit or waste-burning kiln operating hours. Express the PM CPMS output as milliamps.
(4) Calculate the arithmetic 30-day rolling average of all of the hourly average PM CPMS output collected during all energy recovery unit or waste-burning kiln operating hours data (milliamps).
(5) You must collect data using the PM CPMS at all times the energy recovery unit or waste-burning kiln is operating and at the intervals specified in paragraph (x)(1)(ii) of this section, except for periods of monitoring system malfunctions, repairs associated with monitoring system malfunctions, required monitoring system quality assurance or quality control activities (including, as applicable, calibration checks and required zero and span adjustments), and any scheduled maintenance as defined in your site-specific monitoring plan.
(6) You must use all the data collected during all energy recovery unit or waste-burning kiln operating hours in assessing the compliance with your operating limit except:
(i) Any data collected during monitoring system malfunctions, repairs associated with monitoring system malfunctions, or required monitoring system quality assurance or quality control activities conducted during monitoring system malfunctions are not used in calculations (report any such periods in your annual deviation report);
(ii) Any data collected during periods when the monitoring system is out of control as specified in your site-specific monitoring plan, repairs associated with periods when the monitoring system is out of control, or required monitoring system quality assurance or quality control activities conducted during out-of-control periods are not used in calculations (report emissions or operating levels and report any such periods in your annual deviation report);
(iii) Any PM CPMS data recorded during periods of CEMS data during startup and shutdown, as defined in this subpart.
(7) You must record and make available upon request results of PM CPMS system performance audits, as well as the dates and duration of periods from when the PM CPMS is out of control until completion of the corrective actions necessary to return the PM CPMS to operation consistent with your site-specific monitoring plan.
(8) For any deviation of the 30-day rolling average PM CPMS average value from the established operating parameter limit, you must:
(i) Within 48 hours of the deviation, visually inspect the air pollution control device;
(ii) If inspection of the air pollution control device identifies the cause of the deviation, take corrective action as soon as possible and return the PM CPMS measurement to within the established value; and
(iii) Within 30 days of the deviation or at the time of the annual compliance test, whichever comes first, conduct a PM emissions compliance test to determine compliance with the PM emissions limit and to verify. Within 45 days of the deviation, you must re-establish the CPMS operating limit. You are not required to conduct additional testing for any deviations that occur between the time of the original deviation and the PM emissions compliance test required under this paragraph.
(iv) PM CPMS deviations leading to more than four required performance tests in a 12-month process operating period (rolling monthly) constitute a violation of this subpart. [76 FR 15453, Mar. 21, 2011, as amended at 78 FR 9182, Feb. 7, 2013]